
MAE 3780: Robot Project Final Report
Team 27: TEC

May 16th, 2024
Chimdi Anude - cca54w
Tyler Wisniewski - ttw24

ROBOT DESIGN AND STRATEGY OVERVIEW
Our mechanical robot design was a plow in front of the robot that would guide the cubes into the

robot’s arms. The arms were curved to keep the cubes in one place as we moved around the board. We used steel
for the robot arms as it would make the arms less likely to bend out of shape. At the start of the competition, the
idea is that the arms are raised above the robot to stay within the size constraint, and as the robot moves, the
arms come down. Our electrical design used the color sensor, two QTI sensors, and an LED. We used the color
sensor to detect whether the robot was on the board's yellow, blue, and black sides. The QTI sensors were to
detect if the robot’s arms were at the border. The LED signaled when the robot was collecting blocks and ready to
return home. The software design was for 45 seconds; the robot goes to the other side and collects blocks. On
the away side, the robot goes straight unless it detects a border from the QTI sensors. Then, it turns 90 degrees
and 180 degrees if the color sensor detects black. Once the 45 seconds are up, the LED turns on, and the robot
returns to its home side since it carries all the cubes in its arms.

DESIGN PROCESS REFLECTION
So, for Milestone One, we presented the flowchart in Appendix D and explained our strategy for the

competition to the TAs. Milestone Two was simply assembling the robot with the parts made available in the lab
and having it move in a particular path. One thing we noticed was that our robot drifted to the left. We
experimented with different types of wheels to mitigate this, but it was a persistent issue that we worked around
in our code. We were still on track with our original design in Milestone Two. That changed with Milestone Three.
We struggled with Border detection. Initially, we used a pin change interrupt for the color sensor to get new
readings from the sensor. From there, it would decide whether it was blue or yellow. However, we had difficulties
getting values for the QTI sensors, which led to us getting checked off a day late. To pass Milestone Three, we

used the color sensor to detect all three colors and figure out the QTIs later. By Milestone Four, we figured out
how to use the QTI sensors and assembled the plow and robot arms. We programmed it to take the path we
proposed in Milestone One without the timing, and it worked very well. Our robot could carry at most fifteen
cubes in its arms. The biggest problem we had leading up to the competition was timing the code for 45 seconds
and having it return home. We tried to implement a timer and even a counter, but there were many bugs we
could not solve in time for the robot. The code we used to compete in was untested, so we had no idea how it
would perform in the competition.

COMPETITION ANALYSIS
During the competition portion of this project, our robot ran into some unexpected issues that resulted

in its overall poor performance. Our robot competed in 7 matches, finishing with a record of 2 wins, one draw,
and four losses. Our robot's performance was identified as a bug in the code. Due to unfortunate time
circumstances, the code on our competition robot was untested. As such, our robot displayed very bizarre
behavior whenever it started on the blue side. Due to the different lighting in the Duffield Atrium, the color
sensor reads Blue as Black; thus, the robot is stuck in a retreating cycle anytime it finds itself in Blue.

Alternatively, our robot's mechanical design and material selection became a strength during the
competition. Its metal frame allowed our robot to maintain its shape after unexpected contact/engagement with
an opposing robot. In addition, the functionality of the wing, which was used to maintain its starting position,
worked well throughout the competition. This allowed us to maximize the width of our robot, which was
beneficial when securing blocks.

After the competition, a slightly edited version of the code was uploaded, and the robot did significantly
better. TEC won several exhibition matches against strong robots, including tournament Quarter-Finalists and
the ASML robot.

CONCLUSIONS
Our robot design journey was marked by significant learning experiences, technical challenges, and

eventual triumphs. The robust mechanical design effectively controlled cubes and performed well in securing
blocks and maintaining integrity during collisions. The robot performed so well in collisions that forcing
collisions even became a viable strategy in later exhibition matches.

We should have made better use of open hours before the competition so that we could test our final
code before the competition. This project highlighted the importance of thorough testing and adaptability,
providing valuable insights for future robotics endeavors. We encourage future groups to precisely budget time
for testing and tuning their robot so that your team can finalize a strategy and test code in advance of the
competition.

Also, we recommend that future groups properly use their budgets. Our team was significantly under the
allotted budget, and we would have bought cliff bars or Swedish fish on McMaster to fuel us throughout the

competition.

APPENDIX A: BILL OF MATERIALS

APPENDIX B: CIRCUIT DIAGRAM

APPENDIX C: CAD FILES AND DRAWINGS

Reference used when making steel arms and plows

APPENDIX D: FLOWCHART

APPENDIX E: CODE

Acknowledgement: The color sensor code heavily references TA
Stephan’s code

Competition Code:
/*
Team 27
Team Members: Tyler Wisniewski, Ethan Sarpong, Chimdi Anude

HARDWARE CONNECTIONS:
PIN A3 & A2 -> Left H-Bridge Motor 3 4
PIN A1 & A0 -> Right H-Bridge Motor 5 6
PIN 0 ->
PIN 1 ->
PIN 2 ->
PIN 3 -> Left QTI Sensor R / pin change
PIN 4 -> Right QTI Sensor R / pin change
PIN 5 ->
PIn 6 ->
PIN 7 -> Color Sensor output/ pin change
PIN 8-11 -> S0-S3 on the Color sensor
PIN 12 ->
Pin 13 ->

WIRE COLOR CODE FOR BOARD:
Not specified

Note: The Left H-Bridge Green and Blue Wires were Flipped on the Bread Board
*/

//Global Variables
int forward = 0b00001010; // pin A3 & A1 are HIGH 3, 5
int backward = 0b00000101; // pin A0 & A2 HIGH 4, 6
int right = 0b00001001; // PIN A3 & A0 HIGH (Right Wheel Backward - Left

Wheel Forward) 3, 6
int left = 0b00000110; // pin A1 & A2 HIGH (Right Wheel Forward - Left Wheel

Backward) 4, 5

// "period" : stores the value of the output wave period in microseconds
volatile int period;

// "timer" : stores the value of TIMER1
volatile int color_timer;

char homeColor; // of whatever we land on
char awayColor; //

//Global Variables for QTI
int PIN_QTI_LEFT = 0b00001000; // pin 3
int PIN_QTI_RIGHT = 0b0010000; // pin 4

// Pin 12 for LED
int led_toggle = 0b00010000;

// Internal timer
//80 ~= 10 sec 150 is about 20 s
int htime = 80*4; // time in home ; every ten counts = 10 seconds
int atime = 160; // time in away ;

ISR(PCINT2_vect) {
if(PIND & 0b10000000){
TCNT1 = 0x00;

}
else { // and stores the timer value in a variable ("timer") on a falling

edge (or vice versa).
color_timer = TCNT1;
//Serial.println("3");

}
}

/**
* Fit a number into a new range.
*/
float range(float x, float in_min, float in_max, float out_min, float out_max)
{

return (x - in_min) / (in_max - in_min) * (out_max - out_min) + out_min;
}

int getColor() {
// Set interrupt pin
PCMSK2 |= 0b10000000;

_delay_ms(5);

// Divide the step count by 16 to convert from clock ticks
// to microseconds, then multiply by 2 to get to full period
int us = color_timer / 8; // (1/16) * 2

// Reset interrupt pin
PCMSK2 &= ~0b10000000;

return us;

}

// Convert get color into a more user friendly format
char where_am_i_color (){

// Read red color and map to 0-255 range
int red = getColor();
//int R = limit(range(red, 25.0, 435.0, 255.0, 0), 0, 255);
// Serial.print("color:");
// Serial.println(red);
// _delay_ms(50);

if (red<700 && red>115){
//on blue
return ('B');

}
else if (red<100 && red>1){
//on yellow
return ('Y');

}
else if (red>800){ //(3) Using the color sensor to detect black. If it

hits black in the middle does command
PORTC = backward;
// Serial.println("qti front");
_delay_ms(300);
PORTC = left;
_delay_ms(300);

}
}

void initColor() {
// Enable interrupts globally
sei();

// Initialize interrupts
PCICR |= 0b100;

// Initialize the timer
TCCR1A = 0b00; // normal mode
TCCR1B = 0b01; // prescaler = 1
TCNT1 = 0; // reset timer

}

void avoidBorder(){ //
bool edge_left = PIND & PIN_QTI_LEFT; //return T or F
bool edge_right = PIND & PIN_QTI_RIGHT;
_delay_ms(10);

// identify qti sensing border and respond accordingly
if(edge_left && !edge_right){

PORTC = backward;
_delay_ms(300);
PORTC = left;
//Serial.println("qti left");
_delay_ms(250);

}
if(!edge_left && edge_right){
PORTC = backward;
_delay_ms(300);
PORTC = right;
//Serial.println("qti right");
_delay_ms(250);

}
if(edge_left && edge_right){
PORTC = backward;
//Serial.println("qti front");
_delay_ms(300);
PORTC = left;
_delay_ms(300);

}
}

int main(void){
init();
Serial.begin(9600);

//set all GPIO pins (as labeled above)
DDRC = 0b00001111; //set pins A0-A3 as outputs
DDRD = 0; // pins 3,4 QTI sensor, pin 7 Color Sensor Ouput
DDRB = 0b00011111; // pins 8-12 are outputs (sensors)
PORTB = 0b00000001; //20% output frequnecy with blue filter

initColor();

homeColor = where_am_i_color(); // current reading from getColor()

// With the addition of black, the logic works better if we manually assign
the home color
if (homeColor == 'B'){ //Checks Color. Sets the color as home and does the

opposite as away.
homeColor = 'B';
awayColor = 'Y';

} // Works within a binary so the code only changes depending on yellow or
blue
else{
homeColor = 'Y';
awayColor = 'B';

}

int i = 0; // internal counter.
int int_strat= 0; //counter for to hard code initial strategy

PORTC= forward;
_delay_ms(1000);

//Loop(1): Goes Forward and avoids borders.
while(1){ //Wrote this without testing but recommend playing with the time
// htime and atime = total time
PORTC = forward;
where_am_i_color();
avoidBorder();
_delay_ms(10);

// move forward and then turn once you hit away color
if (where_am_i_color() == awayColor && int_strat == 0){ //First time we hit

away color, turn 90 degrees
_delay_ms(300);
PORTC= left;
_delay_ms(610); // CHECK THIS VALUE BY EXPERIMENTATION..... GOAL IS

90ISH DEGREES
PORTC= forward;
int_strat= 1; // this is a one time maneuver

}

//Loop (2): Stay on AWAY side until we hit our home border 3 times. on the
third, pass through

while(where_am_i_color() != homeColor && i < 3){
//using a while loop here helps avoid unnecssary polling and the robot

only focuses on what within this loop
PORTC = forward;
_delay_ms(50);
where_am_i_color();
avoidBorder();

PORTB |= led_toggle; //Sets the led ON
// c_delay_ms(5); //Delay for the led to flash

if (where_am_i_color() == homeColor){
PORTC = backward;
_delay_ms(200);
PORTC = left;
_delay_ms(1000);
i += 1;

}
}

//Loop (3): Get to Home within the time limit and stop after safely within
Home

while (i > 3 && where_am_i_color() == homeColor){ // After the htime is up
and the home color is found.

PORTC = forward; //Go forward and avoid borders
_delay_ms(50);
avoidBorder();
where_am_i_color();
PORTB ^= led_toggle; //Sets the opposite of whatever is in PIN 12
_delay_ms(5); //Delay for the led to flash

if (where_am_i_color() == awayColor){
PORTC = backward;
_delay_ms(250);
PORTC = left;
_delay_ms(800);

}
}

}
}

